extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C22xA4) = C22xC42:C3 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 24 | | C2^2.1(C2^2xA4) | 192,992 |
C22.2(C22xA4) = C2xC24:C6 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 12 | 6+ | C2^2.2(C2^2xA4) | 192,1000 |
C22.3(C22xA4) = C2xC42:C6 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 24 | 6 | C2^2.3(C2^2xA4) | 192,1001 |
C22.4(C22xA4) = C2xC23.A4 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 12 | 6+ | C2^2.4(C2^2xA4) | 192,1002 |
C22.5(C22xA4) = C24.6A4 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 16 | 12+ | C2^2.5(C2^2xA4) | 192,1008 |
C22.6(C22xA4) = C24:A4 | φ: C22xA4/C24 → C3 ⊆ Aut C22 | 16 | 12+ | C2^2.6(C2^2xA4) | 192,1009 |
C22.7(C22xA4) = A4xC4oD4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C22 | 24 | 6 | C2^2.7(C2^2xA4) | 192,1501 |
C22.8(C22xA4) = C2xD4.A4 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C2^2xA4) | 192,1503 |
C22.9(C22xA4) = 2- 1+4:3C6 | φ: C22xA4/C2xA4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.9(C2^2xA4) | 192,1504 |
C22.10(C22xA4) = A4xC42 | central extension (φ=1) | 48 | | C2^2.10(C2^2xA4) | 192,993 |
C22.11(C22xA4) = A4xC22:C4 | central extension (φ=1) | 24 | | C2^2.11(C2^2xA4) | 192,994 |
C22.12(C22xA4) = A4xC4:C4 | central extension (φ=1) | 48 | | C2^2.12(C2^2xA4) | 192,995 |
C22.13(C22xA4) = C2xC4xSL2(F3) | central extension (φ=1) | 64 | | C2^2.13(C2^2xA4) | 192,996 |
C22.14(C22xA4) = C4xC4.A4 | central extension (φ=1) | 64 | | C2^2.14(C2^2xA4) | 192,997 |
C22.15(C22xA4) = (C2xQ8):C12 | central extension (φ=1) | 32 | | C2^2.15(C2^2xA4) | 192,998 |
C22.16(C22xA4) = C4oD4:C12 | central extension (φ=1) | 64 | | C2^2.16(C2^2xA4) | 192,999 |
C22.17(C22xA4) = A4xC22xC4 | central extension (φ=1) | 48 | | C2^2.17(C2^2xA4) | 192,1496 |
C22.18(C22xA4) = C23xSL2(F3) | central extension (φ=1) | 64 | | C2^2.18(C2^2xA4) | 192,1498 |
C22.19(C22xA4) = C2xQ8xA4 | central extension (φ=1) | 48 | | C2^2.19(C2^2xA4) | 192,1499 |
C22.20(C22xA4) = C22xC4.A4 | central extension (φ=1) | 64 | | C2^2.20(C2^2xA4) | 192,1500 |
C22.21(C22xA4) = C2xQ8.A4 | central extension (φ=1) | 48 | | C2^2.21(C2^2xA4) | 192,1502 |
C22.22(C22xA4) = SL2(F3):5D4 | central stem extension (φ=1) | 32 | | C2^2.22(C2^2xA4) | 192,1003 |
C22.23(C22xA4) = D4xSL2(F3) | central stem extension (φ=1) | 32 | | C2^2.23(C2^2xA4) | 192,1004 |
C22.24(C22xA4) = SL2(F3):6D4 | central stem extension (φ=1) | 64 | | C2^2.24(C2^2xA4) | 192,1005 |
C22.25(C22xA4) = SL2(F3):3Q8 | central stem extension (φ=1) | 64 | | C2^2.25(C2^2xA4) | 192,1006 |
C22.26(C22xA4) = Q8xSL2(F3) | central stem extension (φ=1) | 64 | | C2^2.26(C2^2xA4) | 192,1007 |