extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C22×A4) = C22×C42⋊C3 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 24 | | C2^2.1(C2^2xA4) | 192,992 |
C22.2(C22×A4) = C2×C24⋊C6 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 12 | 6+ | C2^2.2(C2^2xA4) | 192,1000 |
C22.3(C22×A4) = C2×C42⋊C6 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 24 | 6 | C2^2.3(C2^2xA4) | 192,1001 |
C22.4(C22×A4) = C2×C23.A4 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 12 | 6+ | C2^2.4(C2^2xA4) | 192,1002 |
C22.5(C22×A4) = C24.6A4 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 16 | 12+ | C2^2.5(C2^2xA4) | 192,1008 |
C22.6(C22×A4) = C24⋊A4 | φ: C22×A4/C24 → C3 ⊆ Aut C22 | 16 | 12+ | C2^2.6(C2^2xA4) | 192,1009 |
C22.7(C22×A4) = A4×C4○D4 | φ: C22×A4/C2×A4 → C2 ⊆ Aut C22 | 24 | 6 | C2^2.7(C2^2xA4) | 192,1501 |
C22.8(C22×A4) = C2×D4.A4 | φ: C22×A4/C2×A4 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C2^2xA4) | 192,1503 |
C22.9(C22×A4) = 2- 1+4⋊3C6 | φ: C22×A4/C2×A4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.9(C2^2xA4) | 192,1504 |
C22.10(C22×A4) = A4×C42 | central extension (φ=1) | 48 | | C2^2.10(C2^2xA4) | 192,993 |
C22.11(C22×A4) = A4×C22⋊C4 | central extension (φ=1) | 24 | | C2^2.11(C2^2xA4) | 192,994 |
C22.12(C22×A4) = A4×C4⋊C4 | central extension (φ=1) | 48 | | C2^2.12(C2^2xA4) | 192,995 |
C22.13(C22×A4) = C2×C4×SL2(𝔽3) | central extension (φ=1) | 64 | | C2^2.13(C2^2xA4) | 192,996 |
C22.14(C22×A4) = C4×C4.A4 | central extension (φ=1) | 64 | | C2^2.14(C2^2xA4) | 192,997 |
C22.15(C22×A4) = (C2×Q8)⋊C12 | central extension (φ=1) | 32 | | C2^2.15(C2^2xA4) | 192,998 |
C22.16(C22×A4) = C4○D4⋊C12 | central extension (φ=1) | 64 | | C2^2.16(C2^2xA4) | 192,999 |
C22.17(C22×A4) = A4×C22×C4 | central extension (φ=1) | 48 | | C2^2.17(C2^2xA4) | 192,1496 |
C22.18(C22×A4) = C23×SL2(𝔽3) | central extension (φ=1) | 64 | | C2^2.18(C2^2xA4) | 192,1498 |
C22.19(C22×A4) = C2×Q8×A4 | central extension (φ=1) | 48 | | C2^2.19(C2^2xA4) | 192,1499 |
C22.20(C22×A4) = C22×C4.A4 | central extension (φ=1) | 64 | | C2^2.20(C2^2xA4) | 192,1500 |
C22.21(C22×A4) = C2×Q8.A4 | central extension (φ=1) | 48 | | C2^2.21(C2^2xA4) | 192,1502 |
C22.22(C22×A4) = SL2(𝔽3)⋊5D4 | central stem extension (φ=1) | 32 | | C2^2.22(C2^2xA4) | 192,1003 |
C22.23(C22×A4) = D4×SL2(𝔽3) | central stem extension (φ=1) | 32 | | C2^2.23(C2^2xA4) | 192,1004 |
C22.24(C22×A4) = SL2(𝔽3)⋊6D4 | central stem extension (φ=1) | 64 | | C2^2.24(C2^2xA4) | 192,1005 |
C22.25(C22×A4) = SL2(𝔽3)⋊3Q8 | central stem extension (φ=1) | 64 | | C2^2.25(C2^2xA4) | 192,1006 |
C22.26(C22×A4) = Q8×SL2(𝔽3) | central stem extension (φ=1) | 64 | | C2^2.26(C2^2xA4) | 192,1007 |